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1 Introduction
Auctions often feature the simultaneous sale of multiple, indivisible goods. Yet,
the perfect divisibility of goods is critical to analyzing preferences using standard,
calculus-based methods.

Baldwin and Klemperer (2019, hereafter BK19) therefore developed new methods
for analyzing quasilinear preferences over indivisible goods and money by introducing
a geometric representation of such preferences. Calling the set of price vectors at
which demand is nonunique the “locus of indifference prices” (LIP), they observe
that the normal vector to a component of a LIP gives the change in demand as prices
cross (only) that component. They then classified valuations into “demand types”:
each demand type is defined by a set of vectors that give the possible normal vectors
to components of LIPs of that demand type.

BK19 showed that there are demand types corresponding to standard domains of
preferences such as the class of all substitutes valuations, and the class of all com-
plements valuations. They also showed that other demand types have important
economic properties related to the existence of competitive equilibrium with indivis-
ible goods: demand types that are unimodular correspond to domains for equilib-
rium existence (see also Danilov et al. (2001)). There are unimodular demand types
corresponding to many previously known domains for equilibrium existence;1 most
unimodular demand types introduced novel domains.

This paper shows how all demand types can in fact be defined more convention-
ally in terms of simple conditions on the comparative statics of demand—thereby
connecting demand types to classical consumer theory. More precisely, we show that
interpreting the defining vectors of a demand type as the building blocks for changes
in demand yields a simple, equivalent definition of demand types that does not rely
on understanding the geometry of LIPs.

Consider first the case in which at most one unit of each good can be demanded.
In this case, we show that a valuation is of a demand type if and only if demand
always changes by a defining vector of the demand type when the price of one good
is increased (Theorem 1). For example, if an agent wants to buy up to one unit of

1For example, BK19 showed that there are unimodular demand types corresponding to the class
of “strong substitutes” valuations (Kelso and Crawford, 1982; Gul and Stacchetti, 1999, 2000; Mil-
grom and Strulovici, 2009), and to the class of “(generalized) gross substitutes and complements”
valuations (Sun and Yang, 2006, 2009; Shioura and Yang, 2015).
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each of two goods and views the goods as independent, then changing the price of one
good can only change demand by ±(1, 0) or ±(0, 1). Thus, such an agent’s valuation
is of demand type ±{(1, 0), (0, 1)}. If instead the agent saw the goods as substitutes,
as increasing the price of one good could then make the agent substitute toward the
other, changing the price of one good could also change demand by (1,−1) or (−1, 1);
in this case, the agent’s valuation would be of demand type ±{(1, 0), (0, 1), (1,−1)}.2

Beyond these simple two-good cases (but maintaining the assumption that at most
one unit of each good can be demanded), it follows from Theorem 1, for example,
that an agent’s valuation is of demand type D = ±{(1, 1, 0), (0, 0, 1), (1, 1,−1)} if and
only if increasing the price of a good always changes demand by (−1,−1, 0), (0, 0,−1),
or ±(1, 1,−1). This condition on comparative statics is different from ones such as
substitutability or complementarity; it intuitively requires that the first two goods be
complementary, and that the bundle consisting of both of them be substitutable for
the third good.

The connection between demand types and the comparative statics of demand is
much more general than the cases addressed by Theorem 1. However, when more
than one unit of each good can be demanded, the defining vectors of a demand type
no longer give the possible changes in demand. Nevertheless, the main results of this
paper show that a demand type can be equivalently defined as the class of valuations
for which each change in prices induces a change in demand that can be built from the
defining vectors of the demand type in a way that satisfies natural revealed preference
conditions (Theorems 2 and 3).

In the general case, we show that one must consider changes in demand that
occur as the prices of several goods change simultaneously. However, it suffices to
consider changes in the price of one good at a time for demand types under which
if we consider any specific pair of goods, the pair is either consistently substitutable,
or consistently complementary, at a one-for-one rate (Theorem 2). These “consistent
demand types” turn out to include every unimodular demand types that contains
the class of all additive valuations (Proposition 1). Hence, every demand type that
contains all additive valuations, and forms a domain for equilibrium existence, can be
defined by conditions on how increasing the price of any one good can affect demand.

When goods are divisible, classical consumer theory shows that standard classes
2The conclusions of these two-good examples can also be seen as consequences of Proposition

4.13 in Baldwin and Klemperer (2014), and Proposition 3.6 in BK19, respectively.

3



of preferences such as substitutes and complements can be defined by conditions on
the derivatives of demand—i.e., by the responses of demand to infinitesimal price
changes—or, equivalently, based on the comparative statics of demand—i.e., by the
responses of demand to arbitrary price changes. With indivisible goods, changes
in demand are discrete—precluding the use of the former approach; nevertheless,
this paper shows that the latter approach leads to simple definitions of domains of
preferences that play a key role in the existence of equilibrium.

We proceed as follows. Section 2 reviews BK19’s definition of demand types.
Section 3 discusses the case in which at most one unit of each good can be demanded.
Section 4 describes the case of consistent demand types. Section 5 considers the
general case. Section 6 offers extensions of the main results. Section 7 is a conclusion.
Appendix A discusses the law of demand for indivisible goods. Appendix B presents
the proofs. Appendix C contains additional examples. Appendix D provides an
alternative definition of consistency.

2 BK19’s Definition of Demand Types
The setting follows BK19. There is a finite set I of indivisible goods. Throughout
this paper, we fix a valuation V : X → R, where X ⊆ ZI is a finite set of integer
vectors. The demand at price vector p ∈ RI is

D(p) = argmax
x∈X

{V (x)− p · x}.

To define demand types, BK19 studied the (tropical) geometry of the set of price
vectors at which demand is nonunique, which they call the “locus of indifference
prices” (LIP). We provide a self-contained summary of the key parts of their analysis.
BK19 defined a LIP facet to be a set F ⊆ RI of price vectors that lies within exactly
one hyperplane, for which there exist bundles x ̸= x′ ∈ X such that F = {p ∈ RI |
x,x′ ∈ D(p)}.3 Each LIP facet has a well-defined normal direction (given by the
normal to the hyperplane within which the facet lies), which BK19 showed gives the
direction in which demand changes for movements in prices that cross that LIP facet
and no other LIP facet.4

3See Definition 2.2(2) in BK19. That definition formulates the condition that F lie within exactly
one hyperplane as the requirement that F have “natural dimension” n−1 (see Footnote 7 in BK19).

4See Proposition 2.4(2) in BK19.
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Figure 1: Demand in Example 1. The labels indicate demand in the regions of price
vectors at which demand is unique. The lines represent the price vectors at which
demand is not unique. The LIP facets are the five rays emanating from (3, 3): two hor-
izontal, two vertical, and one (down-left) diagonal. Thus, the directions of the normals
to LIP facets are (0, 1) for the horizontal rays, (1, 0) for the vertical rays, and (1,−1)
for the diagonal ray. Hence, the valuation is of demand type ±{(1, 0), (0, 1), (1,−1)}.

In particular, the normal direction to each LIP facet must contain an integer
vector. Since only the directions are relevant, we can focus on integer vectors that
are primitive in the sense that the greatest common divisors of their components are
1.

BK19 defined demand types based on these normal primitive integer vectors. Let
D be a set of primitive integer vectors such that if d ∈ D, then −d ∈ D.

Definition 1 (Definition 3.1 in BK19). Valuation V is of demand type D if each LIP
facet has a normal that is parallel to an element of D.

The following example illustrates the mathematics of LIP facets and BK19’s def-
inition of demand types.

Example 1. There are two goods (I = {1, 2}). Let

X = {0, 1, 2, 3}2 ∖ {(2, 3), (3, 2), (3, 3)}.

Consider the valuation V : X → R defined by V (x) = 3x1 + 3x2. Figure 1 de-
picts demand, and illustrates that the vectors normal to LIP facets are in the di-
rections of (1, 0), (0, 1), and (1,−1). Thus, V is of demand type D if and only if

5



{(1, 0), (0, 1), (1,−1)} ⊆ D.

There is a close connection between demand types and the existence of competitive
equilibrium. Call D unimodular if for each linearly independent subset S ⊆ D, there
exists S ′ ⊆ ZI such that |S∪S ′| = |I| and the matrix whose columns are the elements
of S ∪ S ′ has determinant ±1.5 BK19 showed that competitive equilibrium exists in
all economies in which all agents have discrete-concave valuations of demand type D
if and only if D is unimodular.6 Here, letting Conv Y denote the convex hull of a set
Y ⊆ RI , valuation V is discrete-concave if each bundle in ConvX ∩ ZI is demanded
at some price vector.

3 The Case of Binary Valuations
To illustrate the connection between demand types and comparative statics of demand
developed in this paper, this section focuses on the case in which at most one unit of
each good can be demanded. Our first theorem shows that in this case, a valuation
is of a demand type if and only if increasing the price of one good always changes
demand by a defining vector of the demand type.

Theorem 1. Suppose that X ⊆ {0, 1}I . Valuation V is of demand type D if and
only if, for all goods i, price vectors p, and new prices p′i > pi such that D(p) = {x}
and D(p′i,pI∖{i}) = {x′}, the difference x′ − x is either 0 or an element of D.

To prove the “if” direction of Theorem 1, we simply note that the change in
demand entailed by a facet normal must be induced by a change in the price of some
good—and therefore, by hypothesis, be an element of D. To prove the “only if”
direction, recall that the law of demand from consumer theory states that demand
is “downward sloping:” that is, that increasing the price of one good in a way that
changes demand must always strictly lower demand for that good.

Lemma 1 (Law of Demand). Let p be a price vector, and let p′i > pi be a new price
for a good i. Suppose that D(p) = {x} and that D(p′i,pI∖{i}) = {x′}. If x′ ̸= x, then
x′
i < xi.7

5When D spans RI , unimodularity just requires that each nonsingular square matrix whose
columns are elements of D have determinant ±1.

6See Corollary 4.4 in BK19.
7Chambers and Echenique (2017) showed a similar result that considers prices at which demand
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So if the price of good i is increased continuously starting at p, demand for good i

must strictly fall whenever there is any change in demand. But since at most one unit
of i can be demanded, demand for i can only fall once, so demand can only change
once—say at a price vector p̂.8 The overall change in demand is then given by the
change in demand entailed by the LIP facet normal for a LIP facet that contains p̂.

Note that not all elements of D can be obtained as changes in demand when the
price of i is increased: indeed, by the law of demand, only elements of D that prescribe
strict decreases in the demand for i can arise. Formally, given a good i, let

D−
i = {d ∈ D | di < 0}

denote the set of vectors in D that would satisfy the law of demand for the change in
demand induced by an increase in the price of good i.

Corollary 1. Suppose that X ⊆ {0, 1}I . Valuation V is of demand type D if and
only if, for all goods i, price vectors p, and new prices p′i > pi such that D(p) = {x}
and D(p′i,pI∖{i}) = {x′}, the difference x′ − x is either 0 or an element of D−

i .

We next illustrate Corollary 1 through a version of an example from the introduc-
tion.

Example 2. There are three goods (I = {1, 2, 3}). Suppose that X ⊆ {0, 1}I , and let

D = ±{(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 1,−1)}.

By Corollary 1, valuation V is of demand type D if and only if, for all goods i, price
vectors p, and new prices p′i > pi such that D(p) = {x} and D(p′i,pI∖{i}) = {x′}, the
difference x′ − x is one of

• 0, (−1, 0, 0), (−1,−1, 0), or (−1,−1, 1) when i = 1,

• 0, (0,−1, 0), (−1,−1, 0), or (−1,−1, 1) when i = 2,

• 0, (0, 0,−1), or (1, 1,−1) when i = 3.

is nonunique but only obtains a weak inequality (see Lemma 4 in Chambers and Echenique (2017)).
We extend Lemma 1 to consider such prices in Appendix A.

8This step of the argument uses the hypothesis that only one good’s price changes. As we show
in Appendix C, the “only if” direction of Theorem 1 does not extend to simultaneous changes in the
prices of multiple goods.
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This condition requires that:

• increasing the price of one of the first two goods (in a way that changes demand)
either simply lower demand for that good, or make the agent stop demanding
the bundle of the first two goods or substitute from that bundle to the third
good; and

• increasing the price of the third good (in a way that changes demand) either
simply lower demand for that good, or make the agent substitute from the good
to the bundle consisting of the first two goods.

Thus, when at most one unit of each good can be demanded, being of demand type
D intuitively requires that first two goods be (weakly) complementary, and that the
bundle consisting of them be (weakly) substitutable for the third good.

While Theorem 1 suggests a close connection between demand types and the
comparative statics of demand, the relationship is more complicated when more than
one unit of each good can be demanded.

Example 3 (Failure of the conclusion of the “only if” direction of Theorem 1 when
X ̸⊆ {0, 1}I). As in Example 1, suppose that there are two goods (I = {1, 2}), let

X = {0, 1, 2, 3}2 ∖ {(2, 3), (3, 2), (3, 3)},

and define V : X → R by V (x) = 3x1 + 3x2. Letting D = ±{(1, 0), (0, 1), (1,−1)},
Example 1 shows that V is of demand type D. However, considering the price vector
p = (1, 2) and increasing the price of the first good to p′1 = 4, we have that D(p) =

{(3, 1)} and D(p′1, p2) = {(0, 3)}, while the difference (0, 3) − (3, 1) = (−3, 2) is not
an element of D.

When more than one unit of each good can be demanded, Example 3 shows that
changing the price of a good need not change demand for valuations of a demand
type by a defining vector of the demand type. We therefore consider changes in
demand can be built from the defining vectors in a way that satisfies natural revealed
preference conditions. The remainder of the paper formalizes this idea and uses it to
give new definitions of demand types.
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4 The Case of Consistent Demand Types
In this section, we show how a broad class of demand types can be defined in terms
of conditions on how increasing the price of one good can affect demand.

4.1 Motivating Example: Strong Substitutes

We illustrate our approach using the example of strong substitutes.
Milgrom and Strulovici (2009) defined strong substitutability by building on a

standard definition of substitutability for settings with indivisible goods (Kelso and
Crawford, 1982; Ausubel and Milgrom, 2002), which requires that increasing the price
of one good weakly raise demand for all other goods. Formally, V is a substitutes
valuation if for all goods i, price vectors p, and new prices p′i > pi such that D(p) =

{x} and D(p′i,pI∖{i}) = {x′}, we have that x′
j ≥ x′

i for all goods j ̸= i. Milgrom and
Strulovici (2009) refined substitutability by requiring that units of goods, rather than
goods, be substitutes. Formally, we say that V is a strong substitutes valuation if it
corresponds to a substitutes valuation when each unit of each good is regarded as a
separate good.

There is an important connection between strong substitutability and a mono-
tonicity property for the total number of demanded units introduced by Hatfield and
Milgrom (2005). We say that V satisfies the law of aggregate demand if for all goods i,
price vectors p, and new prices p′i > pi such that D(p) = {x} and D(p′i,pI∖{i}) = {x′},
we have that ∑

j∈I

x′
j ≤

∑
j∈I

xj.

For discrete-concave valuations, strong substitutability is equivalent to the conjunc-
tion of substitutability and the law of aggregate demand.

Fact 1 (Milgrom and Strulovici, 2009; Shioura and Tamura, 2015). Valuation V is a
strong substitutes valuation if and only if it is a discrete-concave substitutes valuation
that satisfies the law of aggregate demand.9

Demand types give an alternative viewpoint on substitutability and the law of
aggregate demand. To understand this viewpoint, consider a change in demand from

9Milgrom and Strulovici (2009) assumed that valuations are monotone; Shioura and Tamura
(2015) proved the result without that assumption.
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x to x′ in response to an increase in the price of good i. We show that the conditions
on x′ − x entailed by substitutability and the law of aggregate demand is equivalent
to the condition that x′ − x can be expressed as a nonnegative linear combination of
certain integer vectors.

Lemma 2. Let i be a good. Vectors x,x′ ∈ RI satisfy x′
j ≥ xj for all goods j ̸= i

and
∑

j∈I x
′
j ≤

∑
j∈I xj if and only if x′ − x can be expressed as a nonnegative linear

combination of the vectors −ei and {ej − ei | j ∈ I ∖ {i}}.

Here, ej ∈ RI denotes the elementary basis vector corresponding to a good j ∈ I.
Thus, the vector −ei corresponds to a decrease in demand for good i, while a vector
ej − ei corresponds to one-for-one substitution from good i to good j. Each of these
vectors clearly satisfies the conditions entailed by substitutability and the law of
aggregate demand for the change in demand in response to an increase in the price
of good i; Lemma 2 states that every such change in demand is a nonnegative linear
combination of these vectors. Intuitively, Lemma 2 tells us that the basic demand
changes for a substitutes valuation satisfies the law of aggregate demand are10

Dss = {±ei | i ∈ I} ∪ {ei − ej | i ̸= j ∈ I}.

To be more precise about the relationship between substitutability, the law of
aggregate demand, and Dss, note that the vectors in Lemma 2 are precisely the
vectors in Dss that specify strict decreases in demand for good i. Thus, Lemma 2
shows that V is a substitutes valuation that satisfies the law of aggregate demand if
and only if every increase in the price of a good i induces a change a demand that can
expressed as a nonnegative linear combination of vectors in Dss, each of which would
separately satisfy the law of demand for the price increase.

Example 4. In Example 3, V is a strong substitutes valuation. And the price ef-
fect (−3, 2), which is induced by an increase in the price of the second good, is a
nonnegative linear combination

(−3, 2) = 2(−1, 1) + (−1, 0)

of the vectors (−1, 1) and (−1, 0)—which are the elements of Dss that specify strict
10BK19 called Dss the set of strong substitutes vectors.

10



decreases in demand for the second good (and hence satisfy the law of demand for
the price increase).

BK19 provided a different viewpoint on the connection between strong substi-
tutability and Dss in terms of demand types.

Fact 2 (Shioura and Tamura, 2015; BK19). If V is discrete-concave, then V is a
strong substitutes valuation if and only if it is of demand type Dss.

Combining Lemma 2 and Facts 1 and 2, we see that interpreting the vectors in Dss

as the building blocks from which changes in demand can be built leads to a definition
of the demand type Dss. Our new definitions of demand types are extensions of this
idea.11

4.2 Consistent Demand Types

We now describe a class of demand types that, like strong substitutes, can be defined
in terms of conditions on the changes in demand induced by increases in the price of
one good.

Definition 2. A set D of integer vectors is consistent if D ⊆ {−1, 0, 1}I , and for all
goods i, j, the product didj is either nonnegative for all d ∈ D or nonpositive for all
d ∈ D.

Since the elements of D give basic changes in demand, the first part of Definition 2
requires that any substitution and complementarity between pairs of goods be at a
one-to-one rate.12 The second part of Definition 2 requires that if we consider any
specific pair i, j of goods, i and j are either consistently complementary, or consistently
substitutable, over the entire demand type.13 Here, complementarity corresponds to
the case in which the product didj is nonnegative for all d ∈ D—i.e., di and dj do not
have opposite signs for any d ∈ D; substitutability corresponds to the case in which

11While Fact 2 relies on discrete-concavity, we will see that discrete-concavity is not essential to
our comparative statics approach.

12More precisely, D ⊆ {−1, 0, 1}I holds if and only if for all valuations of demand type D, increasing
the price of a good i always makes demand for other goods change, in magnitude, by the amount
by which demand for i falls. See Appendix D for a formal statement and proof.

13This second part of the definition of consistency has some similarities to the “sign-consistency”
condition of Candogan et al. (2015). However, their condition relates to the signs of quadratic
terms in a quadratic valuation, while our condition relates to changes in demand and substitutabil-
ity/complementarity between pairs of goods.
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the product didj is nonpositive for all d ∈ D—i.e., di and dj do not have the same sign
for any d ∈ D.14 Thus, for example, the set Dss, which corresponds to one-for-one
substitution between all pairs of goods, is the largest D satisfying the first condition
of Definition 2 for which the product didj is nonpositive for all d ∈ D.

Our second theorem shows that like the class of strong substitutes valuations,
consistent demand types can be defined by conditions on how increasing the price of
one good can affect demand.

Theorem 2. Suppose that D is consistent. Valuation V is of demand type D if and
only if, for all goods i, price vectors p, and new prices p′i > pi such that D(p) = {x}
and D(p′i,pI∖{i}) = {x′}, the difference x′ − x is a nonnegative linear combination of
elements of D−

i .

Theorem 2 shows that if D is consistent, then a valuation is of demand type D
if and only if increasing the price of one good always induces a change in demand
that can be expressed as nonnegative linear combination of members of D−

i —i.e., a
nonlinear combination of elements of D, each of which would separately satisfy the
law of demand for the price increase. Thus, interpreting elements of D as the building
blocks from which changes in demand in response to a change in the price of a good
can be built leads to a new definition of demand types in the consistent case. Unlike
Definition 1, this definition is based purely on comparative statics and does not rely
on understanding the geometry of LIPs or LIP facets.

The “only if” direction of Theorem 2 follows from an argument of BK19 that they
used to show that the class of all substitutes valuations corresponds to an “ordinary
substitutes” demand type.15 That argument can in fact be used to show that if
a valuation is of demand type D, then for each change in demand (between price
vectors at which demand is unique), there is a sequence of intermediate price vectors
and bundles demanded at these price vectors that break the overall change in demand
into steps in the directions of elements of D. Combining these steps yields the “only
if” direction of Theorem 2. This approach in fact shows that for a valuation of demand

14More precisely, given goods i, j, the product didj is nonnegative (resp. nonpositive) for all d ∈ D
if and only if increasing the price of i always weakly lowers (resp. weakly raises) demand for all
valuations of demand type D. See Appendix D for a formal statement and proof.

15This result is Proposition 3.6 in BK19. Their Proposition 3.8 uses a similar argument to show
that the class of all complements valuations corresponds to an “ordinary complements” demand
type.
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type D, the change in demand in response to an increase in the price of good i must
be a nonnegative integer combination of elements of D−

i .
The proof of the “if” direction uses a different argument. We cannot apply BK19’s

argument as the hypothesis does not give intermediate price vectors that break the
overall change in demand into steps. To show that a LIP facet normal must be parallel
to an element of D, we consider a good i whose change in demand entailed by the facet
normal is as small as possible (while remaining nonzero). We apply the hypothesis to
a small change in the price of good i near the LIP facet: the change x′−x in demand
entailed by the facet normal can be expressed as a nonnegative linear combination of
elements of D−

i . Consistency entails that demand for goods other than i must change
weakly less than demand for i. But since demand for good i changed the least by
hypothesis, we can conclude that all goods whose demand changes must change by
the same amount. In light of consistency, for any good whose demand changes at all,
every element of D−

i appearing in the expression of x′−x must prescribe a change in
the demand for the good. Hence, only one element of D−

i can appear in the expression
of x′ − x, so x′ − x must be proportional to an element of D.

In the special case of the strong substitutes demand type, Lemma 2 describes
the vectors that can be expressed as nonnegative linear combinations of elements of
(Dss)−i . Hence, since Dss is consistent, combining Theorem 2 with Lemma 2 leads to
a simple characterization of the demand type Dss.

Corollary 2. Valuation V is of demand type Dss if and only if it is a substitutes
valuation that satisfies the law of aggregate demand.16

As another illustration, we next revisit the demand type described in Example 2.

Example 5. As in Example 2, suppose that there are three goods (I = {1, 2, 3}), and
let

D = ±{(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 1,−1)}.

Note that D is consistent. Hence, by Theorem 2, valuation V is of demand type
D if and only if, for all goods i, price vectors p, and new prices p′i > pi such that
D(p) = {x} and D(p′i,pI∖{i}) = {x′}, the difference x′ − x is a nonnegative linear
combination of

16Corollary 2 is a version of Fact 2 that applies to valuations that are not discrete-concave. Indeed,
by Fact 1, the case of Corollary 2 for discrete-concave valuations is equivalent to Fact 2.
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• (−1, 0, 0), (−1,−1, 0), and (−1,−1, 1) when i = 1,

• (0,−1, 0), (−1,−1, 0), and (−1,−1, 1) when i = 2,

• (0, 0,−1) and (1, 1,−1) when i = 3.

Note that this condition can be written, dually, as

• x′
1 − x1 ≤ x′

2 − x2 ≤ x3 − x′
3 ≤ 0 when i = 1,

• x′
2 − x2 ≤ x′

1 − x1 ≤ x3 − x′
3 ≤ 0 when i = 2,

• 0 ≤ x′
1 − x1 = x′

2 − x2 ≤ x3 − x′
3 when i = 3.

As discussed in Example 2, being of demand type D thus intuitively requires that the
first two goods be (weakly) complementary at a one-for-one rate, and that the bundle
consisting of one unit of each of them be (weakly) substitutable for the third good.

There is also a connection between consistency and unimodularity: if D is uni-
modular and contains each elementary basis vector, then D is consistent.

Proposition 1. If D is unimodular and contains ei for each good i, then D is
consistent.

The hypothesis that D contains the elementary basis vectors is fairly mild: it
simply requires that changing the price of a good could affect only demand for that
good—or, equivalently, that every additive valuation be of demand type D.17 Thus,
every demand type that contains all additive valuations and is compatible with the
guaranteed existence of competitive equilibrium can be defined in terms of simple
conditions on the comparative statics of demand in response to an increase in the
price of one good.

17Indeed, D contains the elementary basis vectors if and only if every additive valuation is of
demand type D (see the proof of Proposition 4.13 in Baldwin and Klemperer (2014)). However,
there are unimodular D that are not consistent (hence, in particular do not contain the elementary
basis vectors)—such as D = ±{(1,−1), (2,−1)}. Nevertheless, even if D does not contain the
elementary basis vectors, applying a suitably chosen (unimodular) basis change to ZI would make
the transform of D contain the elementary basis vectors.
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5 The General Case
For inconsistent D, considering changes in the price of one good at a time may not
suffice to define demand type D—as the following example illustrates.

Example 6 (Failure of Theorem 2 if D ̸⊆ {−1, 0, 1}I). There are two goods (I =

{1, 2}). Let X = {(3, 0), (0, 2)}, and define V : X → R by V (x) = x1 + x2.
Let D = ±{(1,−1), (2,−1)} ̸⊆ {−1, 0, 1}I .18 Valuation V is not of demand type

D. Indeed, the set of price vectors at which demand is nonunique is

L = {p | 3p1 − 2p2 = 1}.

Since bundles (3, 0) and (0, 2) are both demanded at each price vector in L, the set
L is a LIP facet. And the normal to L is in the direction of (3,−2)—which is not an
element of D.

However, the hypothesis of the “if” direction of Theorem 2 does hold. Indeed,
let p be a price vector, let p′i > pi be a new price for a good i, and suppose that
D(p) = {x} and that D(p′i,pI∖{i}) = {x′}. If x′ = x, then trivially x′ − x is a
nonnegative linear combination of elements of D−

i . Otherwise, if the first good’s price
was increased (i.e., i = 1), then by the law of demand, we must have that x = (3, 0)

and that x′ = (0, 2). In this case, as

D−
1 = {(−1, 1), (−2, 1)} and (−3, 2) = (−1, 1) + (−2, 1),

the difference x′−x is a nonnegative linear combination of elements of D−
i . Similarly,

if the second good’s price was increased (i.e., i = 2), then by the law of demand, we
must have that x = (0, 2) and that x′ = (3, 0). In this case, as

D−
2 = {(1,−1), (2,−1)} and (3,−2) = (1,−1) + (2,−1),

the difference x′ − x is again a nonnegative linear combination of elements of D−
i .

The issue in Example 6 is that three-for-two substitution between goods can mas-
querade as a combination of two-for-one and one-for-one substitution when prices
are changed one at a time. As we show in Appendix C, a similar issue can arise if
D ⊆ {−1, 0, 1}I but the second condition of Definition 2 is not satisfied.

18As discussed in Footnote 17, this D is unimodular but not consistent.
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Hence, we need to consider simultaneous changes in the prices of multiple goods
to define inconsistent demand types in terms of comparative statics of demand. For
such price changes, recall that law of demand states that if a change in prices induces
a change in demand, then the value of the change in demand must be negative when
evaluated with respect to the change in prices.

Lemma 1′ (Law of Demand). Let p,p′ be price vectors. Suppose that D(p) = {x}
and that D(p′) = {x′}. If x′ ̸= x, then (p′ − p) · (x′ − x) < 0.19

We write
D(p,p′) = {d ∈ D | (p′ − p) · d < 0}

for the set of elements of D that would satisfy the law of demand for a change in prices
from p to p′. To compare with the case in which only one good’s price changes, note
that D−

i = D
(
p, (p′i,pI∖{i})

)
for all goods i, price vectors p, and new prices p′i > pi.

Our third theorem shows that when D is finite, a valuation is of demand type D
if and only if changing the price vector from p to p′ induces a change in demand that
is a nonnegative linear combination of elements of D(p,p′).

Theorem 3. Suppose that D is finite. Valuation V is of demand type D if and only
if, for all price vectors p,p′ such that D(p) = {x} and D(p′) = {x′}, the difference
x′ − x is a nonnegative linear combination of elements of D(p,p′).

Theorem 3 shows that by interpreting the elements of D as the building blocks
from which changes in demand in response to simultaneous changes in the prices of
several goods can be built, we obtain a new definition of demand types even beyond
the consistent case. Unlike Definition 1, this definition does not rely on understanding
the geometry of LIPs.

Like the “only if” direction of Theorem 2, the “only if” direction of Theorem 3
by applying an argument of BK19.20 For the “if” direction, to understand why con-
sidering simultaneous changes in the prices of several goods leads to a definition of
inconsistent demand types in terms of comparative statics, let us revisit Example 6.

19Lemma 1′ is a version of Proposition 3.E.4 in Mas-Colell et al. (1995) for settings with indivisible
goods. Chambers and Echenique (2017) showed a similar result that considers prices at which
demand is nonunique but only obtains a weak inequality (see Lemma 4 in Chambers and Echenique
(2017)). We extend Lemma 1′ to consider such prices in Appendix A.

20Similar to the “only if” direction of Theorem 2, this approach in fact shows for a valuation of
demand type D, the change in demand in response to a change in prices from p to p′ must be a
nonnegative integer combination of elements of D(p,p′).
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In that example, we can distinguish three-for-two substitution from combinations of
one-for-one and two-for-one substitution by considering a price increase for which the
price of the second good increases by slightly more than 3

2
times the increase in the

price of the first good. Indeed, for such a price increase, one-for-one substitution
would entail substitution from one unit of the second good to one unit of the first
good and two-for-one substitution would entail substitution from two units of the
first good to one unit of the second good—neither of which would increase the total
number of demanded units. On the other hand, three-for-two substitution entails
substitution from two units of the second good to three units of the first good—a
strict increase in the total number of demanded units.

Example 7. In the setting of Example 6, let 0 < ϵ < 1
4
, and consider the price vectors

p = (1 + ϵ, 0) and p′ = (3− ϵ, 3). Since p′ − p = (2− 2ϵ, 3), we have that

D(p,p′) = {(1,−1), (−2, 1)}.

Demand at p and p′ is given by D(p) = (0, 2) and D(p′) = (3, 0). The change in
demand (3, 0)−(0, 2) = (3,−2) is not a nonnegative linear combination of elements of
D(p,p′): indeed, we have that d1+d2 ≤ 0 for all d ∈ D(p,p′), but that 3−2 = 1 > 0.

The proof of “only if” direction of Theorem 3 is based on a similar strategy. In
Example 7, the change in prices from p to p′ nearly lies on on the LIP facet L (from
Example 6) along which both (3, 0) and (0, 2) are demanded. For the general argu-
ment, if there is a LIP facet that is not normal to any element of D, then we consider
a change in prices from p to p′ that (nearly) lies on the LIP facet such that p′ − p

is not (nearly) normal to any element of D. We complete the argument by showing
that the induced change in demand cannot be a nonnegative linear combination of
elements of D(p,p′).

6 Extensions
This section offers extensions of the main results to the case in which D is infinite,
and to comparative statics between price vectors at which demand is nonunique.
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6.1 Allowing for Infinite D

As we show in Appendix C, Theorem 3 may not hold if D is infinite.21 But, as we
present here, a simple extension allows for infinite D. In effect, the conclusion of
Theorem 3 holds if one restricts to elements of D that lie in a sufficiently large box.

Corollary 3. Valuation V is of demand type D if and only if there exists M such
that letting D̂ = D ∩ [−M,M ]I , for all price vectors p,p′ such that D(p) = {x} and
D(p′) = {x′}, the difference x′ − x is a nonnegative linear combination of elements
of D̂(p,p′).

6.2 Comparative Statics When Demand is Nonunique

Sections 3–5 focused on changes in demand between price vectors at which demand is
unique. We now investigate how demand types constrain changes in demand between
other price vectors. Specifically, we show that if a valuation is of demand type D,

then for all price vectors p,p′ and all bundles x ∈ D(p), there exists a (potentially
non-integer) bundle x′ ∈ ConvD(p′) satisfying similar conditions to Theorem 3 and
Corollary 3.

Proposition 2. If V is of demand type D, then for all price vectors p,p′ and all
x ∈ D(p), there exists x′ ∈ ConvD(p′) such that x′ − x is a nonnegative linear
combination of elements of D(p,p′).

Proposition 2 shows that the approach of defining demand types based on con-
ditions on the comparative statics of demand naturally extends to price vectors at
which demand is nonunique if one considers the convex hulls of demand sets.

To prove Proposition 2, we express x as a convex combination of bundles that
are uniquely demanded at price vectors near p. We then consider demand at cor-
responding price vectors near p′ and construct a element of ConvD(p′) based on a
convex combination analogous to x. Applying the “only if” direction of Corollary 3 to
nearby price vectors then shows that x′−x must be a nonnegative linear combination
of elements of D(p,p′).

21One important example of an infinite D is the D that defines the ordinary substitutes demand
type, which corresponds to the class of all substitutes valuations (see Definition 3.5 and Proposition
3.6 in BK19). However, it turns out that the conclusion of Theorems 2 and 3 do hold for this D: this
conclusion follows from the characterization of the ordinary substitutes demand type as the class of
all substitutes valuations.
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Note that in general, the conclusion of Proposition 2 would not hold if x′ were
required to be integer or to be in D(p′) (see Example 6 in Danilov et al. (2003), as
well as Appendix C). But when D is unimodular and V discrete-concave, it turns
out that x′ can be chosen to be in D(p′); this result leads to a characterization of
the discrete-concave valuations of unimodular demand types that explicitly considers
price vectors at which demand is nonunique.

Corollary 4. Suppose that D is unimodular and that V is discrete-concave. Valuation
V is of demand type D if and only if, for all price vectors p,p′ and all x ∈ D(p), there
exists x′ ∈ D(p′) such that x′ − x is a nonnegative linear combination of elements of
D(p,p′).

The “if” direction of Corollary 4 follows from Theorem 3 as unimodular D are
finite. To derive the “only if” direction of Corollary 4 from Proposition 2, we use the
existence of competitive equilibrium in an auxiliary economy.

7 Conclusion
This paper shows how the classification of valuations over indivisible goods into “de-
mand types,” which BK19 introduced via a tropical geometric approach, can be
defined more conventionally in terms of simple conditions on the comparative statics
of demand. Indeed, we show that interpreting the defining vectors of a demand type
as the building blocks from which changes in demand can be built leads to a new defi-
nition of demand types. For “consistent” demand types, which include every demand
type that contains all additive valuations and is compatible with the guaranteed ex-
istence of competitive equilibrium, it suffices to consider changes in the price of one
good at a time; for general demand types, we must consider simultaneous changes
in the prices of several goods. These results show that even though indivisibilities
preclude analyzing demand using infinitesimal changes in prices, the classical con-
sumer theory approach of studying preferences in terms of the comparative statics of
demand still works well with indivisible goods.
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A The Law of Demand when Demand is Nonunique
In this appendix, we derive a versions of the law of demand that apply for price
vectors at which demand is nonunique. Our result strengthens Lemmata 1 and 1′.

Lemma A.1. Let p,p′ be price vectors, and let x ∈ D(p) and x′ ∈ D(p′).

(a) We have that (p′ − p) · (x′ − x) ≤ 0, with equality if and only if x ∈ D(p′) and
x′ ∈ D(p).

(b) If D(p) = {x} and x′ ̸= x, then (p′ − p) · (x′ − x) < 0.

The weak inequality of Lemma A.1(a) is part of Lemma 4 in Chambers and
Echenique (2017). The proof of the full result also follows from the proof of Lemma
4 in Chambers and Echenique (2017).

Proof. We first prove Part (a). Since x ∈ D(p), we have that

V (x)− p · x ≥ V (x′)− p · x′

V (x)− V (x′) ≥ p · (x− x′), (A.1)

with equality if and only if x′ ∈ D(p). Similarly, we have that

V (x′)− V (x) ≥ p′ · (x′ − x), (A.2)

with equality if and only if x ∈ D(p). Adding (A.1) and (A.2), we have that

0 ≥ p′ · (x′ − x) + p · (x− x′) = (p′ − p) · (x′ − x),

with equality if and only if x′ ∈ D(p) and x ∈ D(p)—as desired.
To prove Part (b), note that if D(p) = {x} and x′ ̸= x, then x′ /∈ D(p). Hence,

Part (b) follows from Part (a).

B Proofs
Several proofs use the following technical characterization of demand types, which is
“dual” to Definition 1 and follows from Proposition 2.20 in BK19.
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Fact B.1. Valuation V is of demand type D if and only if, for all price vectors p for
which ConvD(p) is a line segment, ConvD(p) is parallel to an element of D.

Several proofs also use the following technical claim to connect Fact B.1 to prop-
erties of the comparative statics of demand.

Claim B.1. If p̂ is a price vector such that ConvD(p̂) is a line segment with endpoints
x,x′, then for each vector s ∈ RI with s · (x′ − x) < 0, there exists λ > 0 such that
D(p̂− λs) = {x} and D(p̂+ λs) = {x′}.

Proof. Let x′−x = ng, where g is a primitive integer vector, and n > 0. Without loss
of generality, we can assume that ∥s∥ = 1. By the upper hemicontinuity of demand,
there exists λ such that D(p) ⊆ D(p̂) for all p with ∥p− p̂∥ ≤ λ.

If x′′ = x+ ℓg ∈ D(p̂− λs), then since x ∈ D(p̂), applying Lemma A.1(a) to the
price change from p̂− λs to p̂, we see that

0 ≥ λs · (x′′ − x) = ℓλs · g = ℓλ
s · (x′ − x)

n
,

so ℓ ≤ 0 must hold. As D(p) ⊆ D(p̂) ⊆ {x+ ℓg | 0 ≤ ℓ ≤ n} holds by construction,
we must have that D(p) = {x}. A similar argument shows that D(p̂+λs) = {x′}.

B.1 Proof of Theorem 1

We first prove the “if” direction. The argument uses the “if” direction of Fact B.1 to
show that V must be of demand type D. Let p̂ be a price vector such that ConvD(p̂)

is a line segment, say with endpoints x and x′. Without loss of generality, we can
assume that there exists a good i such that xi > x′

i. By Claim B.1 applied to the
vector s = ei, there exists λ > 0 such that letting p = (p̂i−λ, p̂I∖{i}) and p′i = p̂i+λ,
we have that D(p) = {x} and that D(p′i,pI∖{i}) = {x′}. The hypothesis of the “if”
direction then entails that x′ − x ∈ D. In particular, ConvD(p̂) is parallel to an
element of D. Since p̂ was arbitrary, the “if” direction of the proposition thus follows
from the “if” direction of Fact B.1.

We next prove the “only if” direction. Let p be a price vector, let p′i > pi be a
new price for a good i, and suppose that D(p) = {x} and that D(p′i,pI∖{i}) = {x′},
where x′ ̸= x. Since X ⊆ {0, 1}I , we must have that xi = 1 and that x′

i = 0. Let

p̂i = max
{
p′′i ≤ p′i

∣∣x ∈ D(p′′i ,pI∖{i})
}
; (B.1)
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the maximum exists due to the upper hemicontinuity of demand. Applying Lemma A.1(b)
to the price change from p to (p̂i,pI∖{i}), we see that x̂i < xi = 1 for all x̂ ∈
D(p)∖ {x}. Similarly, applying Lemma A.1(b) to the price change from (p′i,pI∖{i})

to (p̂i,pI∖{i}), we see that x̂i > x′
i = 0 for all x̂ ∈ D(p) ∖ {x′}. It follows that

D(p̂i,pI∖{i}) ⊆ {x,x′}. But since demand is upper hemicontinuous, (B.1) implies
that D(p̂i,pI∖{i}) ̸= {x}. Therefore, we must have that D(p̂i,pI∖{i}) = {x,x′}. The
“only if” direction of Fact B.1 then implies that the difference x′ − x must be pro-
portional to an element of D. As x′ − x is a nonzero element of {−1, 0, 1}I , it must
be a primitive integer vector, and hence in fact an element of D.

B.2 Proof of Lemma 1

Lemma 1 is the special case of Lemma A.1(b) in which p′ = (p′i,pI∖{i}) and D(p′) =

{x′}.

B.3 Proof of Lemma 2

We first prove the “if” direction. Suppose that

x′ − x = −αie
i +

∑
j∈I∖{i}

αj(e
j − ei),

where αj ≥ 0 for j ∈ I. We then have that x′
j − xj = αj ≥ 0 for all goods j ̸= i, and

that ∑
j∈I

x′
j −

∑
j∈I

xj = −αi ≤ 0.

We next prove the “only if” direction. Let

αi =
∑
j∈I

xj −
∑
j∈I

x′
j ≥ 0,

and, for goods j ̸= i, let αj = x′
j − xj ≥ 0. We then have that

x′
i − xi =

(∑
j∈I

x′
j −

∑
j∈I

xj

)
−

 ∑
j∈I∖{i}

(x′
j − xj)

 = −αi −
∑

j∈I∖{i}

αj.
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It follows that
x′ − x = −αie

i +
∑

j∈I∖{i}

αj(e
j − ei)

—expressing x′−x as a nonnegative linear combination −ei and {ej−ei | j ∈ I∖{i}}.

B.4 Proof of Theorem 2

Proof of the “only if” direction. The proof of the “only if” direction relies on
the following lemma, which we also use in the proof of Theorem 3.

Lemma B.1. If V is of demand type D, then for all price changes t, there exists an
open, dense set S of price vectors such that for all p0 ∈ S with D(p0 + t) ̸= D(p0),

there are price vectors p1, . . . ,pk = p0 + t and bundles xℓ ∈ D(pℓ) such that for
1 ≤ ℓ ≤ k, the difference xℓ − xℓ−1 is proportional to an element of D and satisfies
t · (xℓ − xℓ−1) < 0.22

The proof of Lemma B.1 follows BK19’s argument to prove their Proposition 3.6.

Proof. It follows from Proposition 2.20 in BK19 that the LIP

L = {p ∈ RI
∣∣ |D(p)| > 1}

is contained in a finite union H1 ∪H2 ∪ · · · ∪Hm of hyperplanes in RI . Consider the
set

W = {p ∈ L | ConvD(p) is not a line segment}

of price vectors. It follows from Proposition 2.20 in BK19 that W is lies in a finite
union of (|I| − 2)-dimensional planes in RI . In particular, the set W ′ = W + Rt is
closed and is contained in a finite union H ′

1 ∪H ′
2 ∪ · · · ∪H ′

m′ of hyperplanes in RI .

Now let

S = RI ∖
(
(H1 ∪ · · · ∪Hm) ∪ ((H1 − t) ∪ · · · ∪ (Hm − t)) ∪ (H ′

1 ∪ · · · ∪H ′
m′)
)
,

which is open and dense by construction. Note that S ⊆ RI ∖
(
L ∪ (L− t) ∪W ′).

22The (1) =⇒ (2) implication of Theorem 4.4 in Section 4.2 of Baldwin and Klemperer’s 2014 work-
ing paper shows that a similar conclusion applies for all p0 for which |D(p0)| = 1, but Lemma B.1
is sufficient for our purposes.
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Since p0 /∈ H1∪H2∪· · ·∪Hm, the line p0+Rt can only meet H1∪H2∪· · ·∪Hm at
finitely many points. In particular, the line segment with endpoints p0 and p0+t can
only meet L at finitely many points; call the points of intersection p̂1, p̂2, . . . , p̂k−1,
and suppose they arise in that order as the segment is traversed from p0 to p0 + t.
Since p0 /∈ H ′

1 ∪H ′
2 ∪ · · · ∪H ′

m′ , none of the points of intersection can be in W .
Suppose that D(p0 + t) ̸= D(p0). In this case, due to the upper hemicontinuity

of demand, we must have that k ≥ 2. Let pℓ = p̂ℓ+p̂ℓ+1

2
for 1 ≤ ℓ ≤ k − 1, and let

pk = p0 + t. By construction, we have that pℓ /∈ L for all 0 ≤ ℓ ≤ k. Hence, we that
|D(pℓ)| = 1 for all 1 ≤ ℓ ≤ k; write D(pℓ) = {xℓ}.

We next show that for each 1 ≤ ℓ ≤ k, the difference xℓ − xℓ−1 is a multiple of an
element of D. By construction, the line segment with endpoints pℓ−1 and pℓ meets
L at exactly one point—namely p̂ℓ ∈ L ∖ W . Due to the upper hemicontinuity of
demand, we must have that {xℓ−1,xℓ} ⊆ D(p̂ℓ). Hence, the “only if” direction of
Fact B.1 guarantees that xℓ − xℓ−1 is a multiple of an element of D.

It remains to prove that t · (xℓ − xℓ−1) < 0 for all 1 ≤ ℓ ≤ k. We first prove that
xℓ ̸= xℓ−1. Suppose for sake of deriving a contradiction that xℓ = xℓ−1. In this case,
since p̂ℓ ∈ L, there must exist x ∈ D(p̂ℓ) ∖ {xℓ−1,xℓ}. Lemma A.1(b) would then
imply that (p̂ℓ−pℓ−1) ·(x−xℓ−1) < 0 and that (p̂ℓ−pℓ) ·(x−xℓ) < 0. Since pℓ−1, p̂ℓ,

and pℓ lie along the line segment with endpoints p and p+ t in that order, the price
changes p̂ℓ − pℓ−1 and pℓ − p̂ℓ must each be positive multiples of t. Hence, we have
that t · (x−xℓ−1) < 0 and that (−t) · (x−xℓ) < 0—contradicting the hypothesis that
xℓ = xℓ−1. We can therefore conclude that xℓ ̸= xℓ−1. Lemma 1′ then guarantees
that (pℓ − pℓ−1) · (xℓ − xℓ−1) < 0, and it follows that t · (xℓ − xℓ−1) < 0.

To complete the proof of the “if” direction, let p′ = (p′i,pI∖{i}), let t = p′ − p,

and let S be as in Lemma B.1. As demand is upper hemicontinuous, there exists a
vector s ∈ RI such that p+ s ∈ S, D(p+ s) = {x}, and D(p′ + s) = {x′}. Applying
Lemma B.1 to p0 = p+s, we see that x′−x must be a nonnegative linear combination
of elements of D−

i .

Proof of the “if” direction. The argument uses the “if” direction of Fact B.1 to
show that V is of demand type D. As in the statement of Fact B.1, let p̂ be a price
vector such that ConvD(p̂) is a line segment. Suppose that ConvD(p̂) has endpoints
x and x′; we wish to to show that x′ − x is parallel to an element of D.
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Consider a good i such that

i ∈ argmin
j|x′

j ̸=xj

|x′
j − xj|. (B.2)

Exchanging the roles of x and x′ if necessary, we can assume that x′
i − xi < 0. By

Claim B.1, there exists λ > 0 such that letting p = (p̂i − λ, p̂I∖{i}) and p′i = p̂i + λ,
we have that D(p) = {x} and that D(p′i,pI∖{i}) = {x′}.

The hypothesis of the “if” direction of the theorem thus entails that there exist
constants αd ≥ 0 for d ∈ D−

i such that

x′ − x =
∑
d∈D−

i

αdd. (B.3)

Let S = {d ∈ D−
i | αd > 0}. Since D is consistent, we have that D ⊆ {−1, 0, 1}I and

hence that di = −1 for all d ∈ D−
i . Since D is closed under negation, consistency

also entails that for each good j ̸= i, we either have that dj ∈ {0, 1} for all d ∈ D−
i

or that dj ∈ {−1, 0} for all d ∈ D−
i . In either case, we have that

|x′
j − xj| =

∣∣∣∣∣∣
∑
d∈D−

i

αddj

∣∣∣∣∣∣ =
∑
d∈D−

i

αd|dj| ≤
∑
d∈D−

i

αd = |x′
i − xi|,

with equality if and only if either dj = 1 for all d ∈ S, or dj = −1 for all d ∈ S. If
the inequality holds strictly, then (B.2) implies that x′

j = xj—in which case dj = 0

must hold for all d ∈ S.
Thus, for each good j ̸= i, we either have that dj = −1 for all d ∈ S, that dj = 1

for all d ∈ S, or that dj = 0 for all d ∈ S. Hence, we must have that |S| = 1, in
which case (B.3) implies that x′ − x is proportional to an element of D. Since p̂ was
arbitrary, the “if” direction of the theorem therefore follows from the “if” direction
of Fact B.1.

B.5 Proof of Proposition 1

We first show that D ⊆ {−1, 0, 1}I . Let d ∈ D be arbitrary, and suppose that di ̸= 0.
Let S = {d} ∪ {ej | j ̸= i}, which is a basis of RI . Unimodularity requires that the
matrix whose columns are the elements of S is ±1; this determinant is clearly ±di,
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and we thus have that di = ±1. Since d and i were arbitrary, we must have that
D ⊆ {−1, 0, 1}I .

Now let d,d′ ∈ D and let i ̸= j be goods. Suppose that didj > 0 and that
d′id

′
j ≤ 0. We need to show that d′id

′
j = 0. Since D is closed under negation, we can

assume without loss of generality that di = dj = d′i = 1 and that d′j ≤ 0. Consider
the set

S = {d,d′} ∪ {ek | k ∈ I ∖ {i, j}},

which is a basis of RI . Unimodularity requires that the matrix whose columns are
the elements of S have determinant ±1; this determinant is clearly ±(1 − d′j), and
hence we must have that d′j = 0. In particular, we have that d′id

′
j = 0—as desired.

B.6 Proof of Lemma 1′

Lemma 1′ is the special case of Lemma A.1(b) in which D(p′) = {x′}.

B.7 Proof of Theorem 3

Proof of the “only if” direction. Let t = p′−p, and let S be as in Lemma B.1.
As demand is upper hemicontinuous, there exists a vector s ∈ RI such that p+s ∈ S,

D(p + s) = {x}, and D(p′ + s) = {x′}. Applying Lemma B.1 to p0 = p + s, we see
that x′−x must be a nonnegative linear combination of elements of D(p+s,p′+s) =

D(p,p′).

Proof of the “if” direction. Suppose for sake of deriving a contradiction that V is
not of demand type D. By (the contrapositive of) the “if” direction of Fact B.1, there
must exist a price vector p̂ such that ConvD(p̂) is a line segment with endpoints x

and x′, where x′ − x is not parallel to an element of D. Since D ⊆ ZI , there must
exist a vector s ∈ RI such that s · (x′ − x) = 0 but s · d ̸= 0 for all d ∈ D. Since D
is finite, there exists ϵ > 0 such that |s · d| > ϵ|(x′ − x) · d| for all d ∈ D. Letting
t = s− ϵ(x′ − x), we have that t · (x′ − x) < 0; and for all d ∈ D, that t · d ̸= 0 and
that the quantities s · d and t · d have the same sign.

By Claim B.1, there exists λ > 0 such that D(p̂−λt) = {x} and D(p̂+λt) = {x′}.
Let p = p̂− λt and let p′ = p̂+ λt. By hypothesis, there exist constants αd ≥ 0 for

26



d ∈ D(p,p′) such that
x′ − x =

∑
d∈D(p,p′)

αdd.

In particular, we have that

0 = s · (x′ − x) =
∑

d∈D(p,p′)

αds · d.

By the construction of t, we have that s · d < 0 for all d ∈ D(p,p′). Hence, we
must have that αd = 0 for all d ∈ D(p,p′), which contradicts the fact that x′ ̸= x.
Therefore, we can conclude that V must be of demand type D.

B.8 Proof of Corollary 3

The “if” direction follows from the corresponding direction of Theorem 3. For the
“only if” direction, let M be such that X ⊆

[
−M

2
, M

2

]
. Fact B.1 implies that for all

price vectors p for which ConvD(p) is a line segment, ConvD(p) is parallel to an
element of D. As demand at each price vector is a subset of X, Fact B.1 implies that
for all price vectors p for which ConvD(p) is a line segment, ConvD(p) is in fact
parallel to an element of D ∩ [−M,M ]. Hence, Fact B.1 implies that V is of demand
type D ∩ [−M,M ]. The “only if” direction of the corollary thus follows from the
corresponding direction of Theorem 3.

B.9 Proof of Proposition 2

The proof uses the following technical claim.

Claim B.2. Let p be a price vector and let ϵ > 0. For each extreme point x of
ConvD(p), there exists a vector s ∈ RI such that ∥s∥ ≤ ϵ and D(p− s) = {x}.

Proof. As demand is upper hemi-continuous, by reducing ϵ if necessary, we can assume
that D(p̂) ⊆ D(p) for all price vectors p̂ with ∥p̂− p∥ ≤ ϵ.

By construction, we must have that x ∈ D(p). Since ConvD(p) is a polytope, x
must be a vertex of ConvD(p)—i.e., there must exist a vector s ∈ RI such that

{x} = argmax
x′∈ConvD(p)

{s · x′}.
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In particular, we have that s · (x′ − x) > 0 for all x′ ∈ ConvD(p)∖ {x}.
Without loss of generality, we can assume that ∥s∥ = ϵ. Applying Lemma A.1(a)

to the price change from p− s to p, we see that s · (x′ −x) ≤ 0 for all x′ ∈ D(p− s).
It follows that x′ /∈ D(p − s) for all x′ ∈ D(p) ∖ {x}. Since ∥s∥ = ϵ, we have that
D(p− s) ⊆ D(p), and it follows that D(p− s) = {x}—as desired.

By the Krein-Millman Theorem, we can write

x =
m∑
ℓ=1

αℓx
ℓ,

where x1, . . . ,xm are extreme points of ConvD(p) and α1, . . . , αm are nonnegative
real numbers with

∑m
ℓ=1 αℓ = 1.

Let ϵ be such that D(p− s) ⊆ D(p) and D(p′ − s) ⊆ D(p′) for all vectors s ∈ RI

with ∥s∥ ≤ ϵ; such an ϵ exists due to the upper hemicontinuity of demand. For each
1 ≤ ℓ ≤ m, let sℓ ∈ RI be such that ∥sℓ∥ ≤ ϵ and D(p − sℓ) = {xℓ}; such vectors
exist by Claim B.2. Let ϵℓ be such that D(p− sℓ − tℓ) = {xℓ} for all vectors tℓ ∈ RI

with ∥tℓ∥ ≤ ϵℓ; such an ϵℓ exists due to the upper hemicontinuity of demand. Letting
x′ℓ be an arbitrary extreme point of ConvD(p′ − sℓ), Claim B.2 (applied to the price
vector p′ − sℓ) guarantees that there exists a vector tℓ ∈ RI with ∥tℓ∥ ≤ ϵℓ such that
D(p′ − sℓ − tℓ) = {x′ℓ}.

By construction, we have that D(p− sℓ − tℓ) = {xℓ}, and the “only if” direction
of Corollary 3 (applied to the price vectors p − sℓ − tℓ and p′ − sℓ − tℓ) therefore
guarantees that x′ℓ−xℓ is a nonnegative linear combination of elements of D(p−sℓ−
tℓ,p′ − sℓ − tℓ) = D(p,p′). By the definition of ϵ, we have that D(p′ − sℓ) ⊆ D(p′),
and hence in particular that x′ℓ ∈ ConvD(p′), for 1 ≤ ℓ ≤ m. Letting

x′ =
m∑
ℓ=1

αℓx
′ℓ ∈ ConvD(p′),

we have that
x′ − x =

m∑
ℓ=1

αℓ

(
x′ℓ − xℓ

)
,

so x′−x must be a nonnegative linear combination of elements of D(p,p′)—as desired.

28



B.10 Proof of Corollary 4

The “if” direction follows from the corresponding direction of Theorem 3, as every
unimodular D is finite (see, e.g., Korkine and Zolotareff (1877)).23

It remains to prove the “only if” direction. Let p,p′ be price vectors, and let
x ∈ D(p). By Proposition 2, there exists x′′ ∈ ConvD(p′) such that x′′ − x is a
nonnegative linear combination of elements of D(p,p′). Write

x′′ − x =
∑

d∈D(p,p′)

αdd,

where αd ≥ 0 for all d ∈ D(p,p′). Let M be an integer with M ≥ αd for all
d ∈ D(p,p′).

For each d ∈ D(p,p′), consider the set

X̂d = {0,−d,−2d, . . . ,−Md}

and the valuation V̂d : X̂d → R defined by V̂d(y) = p′ · y. Let D̂d be the demand
correspondence for the valuation V̂d; by construction, we have that

D̂d(p
′) = X̂d = Conv X̂d ∩ ZI . (B.4)

Hence, each valuation V̂d is concave. Valuation V̂d is of demand type D by Theorem 3
since a nonzero change in demand between price vectors p,p′ (at which demand is
unique) is a multiple of d (by construction) with negative inner product with p′ − p

(by Lemma 1′)—hence a nonnegative linear combination of elements of D(p,p′).
It also follows from (B.4) that

x = x′′ +
∑

d∈D(p,p′)

(−αdd) ∈ ConvD(p′) +
∑

d∈D(p,p′)

Conv D̂d(p
′).

Thus, p′ is a pseudoequilibrium price vector (in the sense of Milgrom and Strulovici
(2009)) in the economy with agents of valuations V and V̂d for d ∈ D(p,p′) when
the total supply of goods is x. Corollary 4.4 in BK19 implies that a competitive
equilibrium exists in that economy. Hence, by Theorem 18 in Milgrom and Strulovici
(2009), p must be a competitive equilibrium price vector in that economy—i.e., we

23In fact, Korkine and Zolotareff (1877) showed that if D is unimodular, then |D| ≤ |I|2 + |I|.
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must have that
x ∈ D(p′) +

∑
d∈D(p,p′)

D̂d(p
′).

Writing
x = x′ +

∑
d∈D(p,p′)

(−βdd),

where x′ ∈ D(p′) and βd ∈ {0, 1, . . . ,M} for d ∈ D(p,p′), we have that

x′ − x =
∑

d∈D(p,p′)

βdd,

is a nonnegative linear combination of elements of D(p,p′)—as desired.

C Additional Examples
This appendix presents additional examples illustrating the role of the hypotheses of
Theorems 1–3 and Proposition 2 in the conclusions of those results.

The first example shows that the conclusion of the “only if” direction of Theorem 1
does not extend to simultaneous changes in the prices of several goods.

Example C.1 (Failure of Theorem 1 if multiple goods’ prices can change simultane-
ously). There are two goods (I = {1, 2}). Let X = {0, 1}2, and define V : X → R by
V (x) = x1 + x2.

Let D = ±{(1, 0), (0, 1)}. As discussed in the introduction, changing the price
of either good (holding fixed the price of the other good) between prices at which
demand is unique would lead to a change in demand of 0, ±(1, 0), or ±(0, 1). Hence,
by Theorem 1, valuation V is of demand type D.

However, letting p = (0, 0) and p′ = (2, 2), we have that D(p) = {(1, 1)} and
that D(p′) = {(0, 0)}. The difference (1, 1)− (0, 0) = (1, 1) is not an element of D.

The second example shows that the conclusion of Theorem 2 can fail if the second
part of Definition 2 is not satisfied—i.e., if there are vectors d,d′ ∈ D and goods i, j

with didj > 0 but d′id
′
j < 0. (Example 1 showed a similar result if the first part of

Definition 2 is not satisfied—i.e., if D ̸⊆ {−1, 0, 1}I .)

Example C.2 (Failure of Theorem 2 for an inconsistent D ⊆ {−1, 0, 1}I). There are
two goods (I = {1, 2}). Let X = {(0, 0), (1, 0), (2, 0)}, and define V : X → R by
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V (x) = x1.
Let D = ±{(1, 1), (1,−1)}. Note that D is not consistent as, letting d = (1, 1) ∈ D

and d′ = (1,−1) ∈ D, we have that d1d2 > 0 but d′1d
′
2 < 0. Valuation V is not of

demand type D. Indeed, the set of price vectors at which demand is nonunique is

L = {p | p1 = 1}.

Since bundles (0, 0) and (2, 0) are both demanded at each price vector in L, the set
L is a LIP facet. And the normal to L is in the direction of (1, 0)—which is not an
element of D.

However, the hypothesis of the “if” direction of Theorem 2 does hold. Indeed,
let p be a price vector, let p′i > pi be a new price for a good i, and suppose that
D(p) = {x} and that D(p′i,pI∖{i}) = {x′}. By the law of demand, we must either
have that x = x′, in which case the difference x′ − x is trivially a nonnegative linear
combination of elements of D−

i ; or that x = (2, 0), x′ = (0, 0), and that i = 1. As
D−

1 = {(−1,−1), (−1, 1)} and

(−2, 0) = (−1,−1) + (−1, 1),

the difference x′ − x is a nonnegative linear combination of elements of D−
i in the

latter case as well.24

The third example shows that the conclusion of Theorem 3 can fail if D is infinite.

Example C.3 (Failure of Theorem 3 for infinite D). Let I, X, and V be as in Exam-
ple C.2.

Let
D = {(n,±1) | n ∈ Z}.

Valuation V is not of demand type D. Indeed, as shown in Example C.2, there is a
LIP facet whose normal vectors are in the direction of (1, 0) /∈ D.

However, the hypothesis of the “if” direction of Theorem 3 does hold. Indeed,
let p,p′ be price vectors such that D(p) = {x} and D(p′) = {x′}. If x′ = x, then

24In fact, in this example, the difference x′ − x is a nonnegative integer combination of elements
of D−

i in either case. A similar remark applies to Example 6. Hence, the conclusion of the “only
if” direction of Theorem 2 would not generally hold if either part of Definition 2 were relaxed even
under strengthening the hypothesis that x′ − x be a nonnegative linear combination of elements of
D−

i to require that x′ − x be a nonnegative integer combination of elements of D−
i .
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x′ − x = 0 is a nonnegative linear combination of elements of D(p,p′). Hence, we
can assume that x′ ̸= x. Without loss of generality, we can assume that x = (2, 0)

and that x′ = (0, 0). In this case, by the law of demand, we must have that p1 < p′1.

Consider the ratio
r =

p′2 − p2
p′1 − p1

,

and let n be an integer such that n ≤ r < n+1. Consider the vectors d1 = (n−1,−1)

and d2 = (−n− 1, 1), which are both elements of D. Note that

(p′ − p) · d1 = (n− 1)(p′1 − p1)− (p′2 − p2) = (n− r − 1)(p′1 − p1) < 0

(p′ − p) · d2 = (−n− 1)(p′1 − p1) + (p′2 − p2) = (r − n− 1)(p′1 − p1) < 0.

Thus, we have that d1,d2 ∈ D(p,p′). We also have that

x′ − x = (−2, 0) = d1 + d2,

so x′ − x is a nonnegative linear combination of elements of D(p,p′).25

The fourth example shows that the conclusion of Proposition 2 would not hold if
the bundle x′ were required to be integer or to be in D(p′).

Example C.4 (Failure of Proposition 2 if x′ were required to be integer or to be in
D(p′)). There are two goods (I = {1, 2}). Let

X = {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1), (1, 1, 2), (1, 2, 1)(2, 1, 1), (2, 2, 2)},

and define V : X → R by V (x) = x1 + x2 + x3.

Let D = ±{(0, 1, 1), (1, 0, 1), (1, 1, 0)}.26 To show that V is of demand type D, let
D+ = {(0, 1, 1), (1, 0, 1), (1, 1, 0)}, and for each d ∈ D+, define a set X̂d = {0,d} and
a valuation V̂d : X̂d → R by V̂d(x) = x1+x2+x3. It follows from Theorem 1 that each
valuation V̂d is of demand type D. Letting D̂d denote the demand correspondence
for the valuation V̂d, we have that we have that D(p) =

∑
d∈D+ D̂d(p) for all price

25In fact, in this example, the difference x′−x is a nonnegative integer combination of elements of
D(p,p′). Hence, the conclusion of the “only if” direction of Theorem 3 would not generally hold for
infinite D even under strengthening the hypothesis that x′ − x be a nonnegative linear combination
of elements of D−

i to require that x′ − x be a nonnegative integer combination of elements of D−
i .

26This D is consistent. Hence, the example shows that Proposition 2 would not hold even for
consistent D if x′ were required to be in D(p′).
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vectors p with |D(p)| = 1 by construction. Hence, applying the “if” direction of
Theorem 2 to each valuation V̂d, we see that for all goods i, price vectors p, and new
prices p′i > pi such that D(p) = {x} and D(p′i,pI∖{i}) = {x′}, the difference x′ − x is
a nonnegative linear combination of elements of D−

i . Thus, by the “only if” direction
of Theorem 2, V is of demand type D.

By construction, demand at the price vector p = (1, 1, 1) is D(p) = X. In
particular, we have that x = (1, 1, 1) ∈ D(p).

Consider the new price p′1 = 2 for good 1. By construction, we have that
D(p′1, p2, p3) = {(0, 0, 0), (0, 1, 1)}. But as D−

1 = {(−1,−1, 0), (−1, 0,−1)}, the dif-
ference x′ − x is not a nonnegative linear combination of elements of D−

1 for any
x′ ∈ D(p′1, p2, p3)—or even for any integer bundle x′ ∈ ConvD(p′1, p2, p3). In-
deed, neither the difference (0, 0, 0) − (1, 1, 1) = (−1,−1,−1) nor the difference
(0, 1, 1)− (1, 1, 1) = (−1, 0, 0) is a linear combination of elements of D−

1 .27

Furthermore, even if it is possible to take x′ ∈ D(p′) in Proposition 2, it may
not be possible to express x′ − x as a nonnegative integer combination of elements
of D(p,p′)—unlike in Theorems 2 and 3 and Corollary 3 (see Section 4.2 and Foot-
note 20).

Example C.5 (Possibility that x′ − x cannot be expressed as an integer combination
of elements of D(p,p′) in Proposition 2 even if x′ can be taken to be an element of
D(p′)). Let I, X, V , p, and x be as in Example C.4. Consider on the new price
vector p′ = (2, 2, 2). By the law of demand, we have that D(p′) = {(0, 0, 0)}; let
x′ = (0, 0, 0). As

D(p,p′) = {(−1,−1, 0), (−1, 0,−1), (0,−1,−1)}
27On the other hand, as guaranteed by Proposition 2, there exists x′ ∈ ConvD(p′1, p2, p3) such

that x′ − x is a nonnegative linear combination of elements of D−
1 . Indeed, letting x′ =

(
0, 1

2 ,
1
2

)
∈

ConvD(p′1, p2, p3), we have that

x′ − x =

(
−1,−1

2
,−1

2

)
=

1

2
(−1,−1, 0) +

1

2
(−1, 0, 1).
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the unique expression of x′ − x as a linear combination of elements of D(p,p′) is28

x′ − x = (−1,−1,−1) =
1

2
(−1,−1, 0) +

1

2
(−1, 0,−1) +

1

2
(0,−1,−1).

So while the difference x′ − x is a nonnegative linear combination of elements of
D(p,p′), it is not a nonnegative integer combination of elements of D(p,p′).

D Characterizing Consistent D

In this appendix, we formally state and prove the characterization of consistent D
described in Footnotes 12 and 14 in Section 4.2.

We first show that D ⊆ {−1, 0, 1}I holds if and only if for all valuations of demand
type D, increasing the price of a good i always makes demand for other goods change,
in magnitude, by the amount by which demand for i falls—as asserted in Footnote 12.

Proposition D.1. We have that D ⊆ {−1, 0, 1}I if and only if for all valuations V

of demand type D, goods i and j, price vectors p, and new prices p′i > pi such that
D(p) = {x} and D(p′i,pI∖{i}) = {x′}, we have that |x′

j − xj| ≤ |x′
i − xi|.

Proof. The “only if” direction follows from the corresponding direction of Corol-
lary 3. To prove the “if” direction, we prove the contrapositive. Suppose that
D ̸⊆ {−1, 0, 1}I ; we prove that there is a valuation V of demand type D, goods
i and j, a price vector p, and a new price p′i > pi such that D(p) = {x} and
D(p′i,pI∖{i}) = {x′} but |x′

j − xj| > |x′
i − xi|.

Let d ∈ D∖ {−1, 0, 1}I . Since d is primitive, there must exist goods i and j such
that |dj| > |di| > 0. By negating d if necessary, we can assume that di < 0.

Let X = {0,d} and define a valuation V : X → R by V (x) = 0. Valuation V is
of demand type D by Corollary 3 since a nonzero change in demand between price
vectors p,p′ (at which demand is unique) is a multiple of d (by construction) with
negative inner product with p′ − p (by Lemma 1′).

Note that D(0) = {0,d} by construction. By Claim B.2, there exists λ > 0

such that letting p = ((−λ)i,0I∖{i}) and p′i = λ, we have that D(p) = {0} and
D(p′i,pI∖{i}) = {d}. To complete the proof, we simply note that |dj| > |di| holds by
the definitions of the goods i, j.

28The uniqueness of this expression is immediate as the vectors in D(p,p′) are linearly indepen-
dent.
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We next show that given goods i, j, the product didj is nonnegative (resp. non-
positive) for all d ∈ D if and only if increasing the price of i always weakly lowers
(resp. weakly raises) demand for all valuations of demand type D—as asserted in
Footnote 14.

Proposition D.2. Let i and j be goods. The product didj is nonnegative (resp. non-
positive) for all d ∈ D or nonpositive for all d ∈ D if and only if for all valuations
V of demand type D, price vectors p and new prices p′i > pi such that D(p) = {x}
and D(p′i,pI∖{i}) = {x′}, we have that x′

j ≤ xj (resp. x′
j ≥ xj).

Proof. The “only if” direction follows from the corresponding direction of Corollary 3.
To prove the “if” direction, we prove the contrapositive. Suppose that there exists
d ∈ D such that didj is negative (resp. positive); we prove that there is a valuation
V of demand type D, a price vector p, and a new price p′i > pi such that D(p) = {x}
and x′

j > xj (resp. x′
j < xj).

By negating d if necessary, we can assume that di < 0, so dj > 0 (resp. dj < 0)
must hold. Let X = {0,d} and define a valuation V : X → R by V (x) = 0. As shown
in the proof of Proposition D.1, valuation V is of demand type D, and there exists
λ > 0 such that letting p = ((−λ)i,0I∖{i}) and p′i = λ, we have that D(p) = {0} and
D(p′i,pI∖{i}) = {d}. To complete the proof, we simply note that dj > 0 (resp. dj < 0)
holds by our normalization of d.
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